tvm.relay.op

Relay core operators.

tvm.relay.op.Op()

A Relay operator definition.

tvm.relay.op.OpPattern()

Operator generic patterns

See also

top.tag()
Contains explanation of the tag type.
tvm.relay.op.get(op_name)

Get the Op for a given name

Parameters:op_name (str) – The operator name
Returns:op – The op of the corresponding name
Return type:Op
tvm.relay.op.register(op_name, attr_key, value=None, level=10)

Register an operator property of an operator.

Parameters:
  • op_name (str) – The name of operator
  • attr_key (str) – The attribute name.
  • value (object, optional) – The value to set
  • level (int, optional) – The priority level
Returns:

fregister – Register function if value is not specified.

Return type:

function

tvm.relay.op.register_schedule(op_name, schedule=None, level=10)

Register schedule function for an op

Parameters:
  • op_name (str) – The name of the op.
  • schedule (function (attrs: Attrs, outs: List[Tensor], target: Target) -> sch: Schedule) – The schedule function.
  • level (int) – The priority level
tvm.relay.op.register_pattern(op_name, pattern, level=10)

Register operator pattern for an op.

Parameters:
  • op_name (str) – The name of the op.
  • pattern (int) – The pattern being used.
  • level (int) – The priority level
tvm.relay.op.register_compute(op_name, compute=None, level=10)

Register compute function for an op.

Parameters:
  • op_name (str) – The name of the op.
  • compute (function (attrs: Attrs, inputs: List[Tensor], out_type: Type, target:Target)) – -> List[Tensor] The compute function.
  • level (int) – The priority level
tvm.relay.op.register_gradient(op_name, fgradient=None, level=10)

Register operator pattern for an op.

Parameters:
  • op_name (str) – The name of the op.
  • fgradient (function (orig_expr : Expr, output_grad : Expr) -> new_expr : Expr) – The gradient being used.
  • level (int) – The priority level
tvm.relay.op.register_alter_op_layout(op_name, alter_layout=None, level=10)

Register alter op layout function for an op

Parameters:
  • op_name (str) – The name of the operator
  • alter_layout (function (attrs: Attrs, inputs: List[Expr]) -> new_expr: Expr) – The function for changing the layout or replacing the operator
  • level (int) – The priority level
tvm.relay.op.schedule_injective(attrs, outputs, target)

Generic schedule for binary broadcast.

tvm.relay.op.debug(expr, debug_func=None)

The main entry point to the debugger.

Reduce operators.

tvm.relay.op.reduce.argmax(data, axis=None, keepdims=False, exclude=False)

Returns the indices of the maximum values along an axis.

Parameters:
  • data (relay.Expr) – The input data
  • axis (None or int or tuple of int) – Axis or axes along which a argmax operation is performed. The default, axis=None, will find the indices of the maximum element of the elements of the input array. If axis is negative it counts from the last to the first axis.
  • keepdims (bool) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
  • exclude (bool) – If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.reduce.argmin(data, axis=None, keepdims=False, exclude=False)

Returns the indices of the minimum values along an axis.

Parameters:
  • data (relay.Expr) – The input data
  • axis (None or int or tuple of int) – Axis or axes along which a argmin operation is performed. The default, axis=None, will find the indices of minimum element all of the elements of the input array. If axis is negative it counts from the last to the first axis.
  • keepdims (bool) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
  • exclude (bool) – If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.reduce.max(data, axis=None, keepdims=False, exclude=False)

Computes the max of array elements over given axes.

Parameters:
  • data (relay.Expr) – The input data
  • axis (None or int or tuple of int) – Axis or axes along which the max operation is performed. The default, axis=None, will find the max element from all of the elements of the input array. If axis is negative it counts from the last to the first axis.
  • keepdims (bool) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
  • exclude (bool) – If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.reduce.mean(data, axis=None, keepdims=False, exclude=False)

Computes the mean of array elements over given axes.

Parameters:
  • data (relay.Expr) – The input data
  • axis (None or int or tuple of int) – Axis or axes along which a mean operation is performed. The default, axis=None, will find the indices of minimum element all of the elements of the input array. If axis is negative it counts from the last to the first axis.
  • keepdims (bool) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
  • exclude (bool) – If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.reduce.min(data, axis=None, keepdims=False, exclude=False)

Computes the min of array elements over given axes.

Parameters:
  • data (relay.Expr) – The input data
  • axis (None or int or tuple of int) – Axis or axes along which a minimum operation is performed. The default, axis=None, will find the minimum element from all of the elements of the input array. If axis is negative it counts from the last to the first axis.
  • keepdims (bool) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
  • exclude (bool) – If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.reduce.prod(data, axis=None, keepdims=False, exclude=False)

Computes the products of array elements over given axes.

Parameters:
  • data (relay.Expr) – The input data
  • axis (None or int or tuple of int) – Axis or axes along which a product is performed. The default, axis=None, will find the indices of minimum element all of the elements of the input array. If axis is negative it counts from the last to the first axis.
  • keepdims (bool) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
  • exclude (bool) – If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.reduce.sum(data, axis=None, keepdims=False, exclude=False)

Computes the sum of array elements over given axes.

Parameters:
  • data (relay.Expr) – The input data
  • axis (None or int or tuple of int) – Axis or axes along which a sum is performed. The default, axis=None, will sum all of the elements of the input array. If axis is negative it counts from the last to the first axis.
  • keepdims (bool) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
  • exclude (bool) – If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Returns:

result – The computed result.

Return type:

relay.Expr

Basic tensor operations.

tvm.relay.op.tensor.abs(data)

Compute element-wise absolute of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.add(lhs, rhs)

Addition with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

Examples

x = relay.Var("a") # shape is [2, 3]
y = relay.Var("b") # shape is [2, 1]
z = relay.add(x, y)  # result shape is [2, 3]
tvm.relay.op.tensor.ceil(data)

Compute element-wise ceil of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.clip(a, a_min, a_max)

Clip the elements in a between a_min and a_max. a_min and a_max are cast to a’s dtype.

Parameters:
  • a (relay.Expr) – The input tensor.
  • a_min (float) – The clip minimum.
  • a_max (float) – The clip maximum.
Returns:

resulta with elements clipped between a_min and a_max.

Return type:

relay.Expr

Examples

tvm.relay.op.tensor.concatenate(data, axis)

Concatenate the input tensors along the given axis.

Parameters:
  • data (Union(List[relay.Expr], Tuple[relay.Expr])) – A list of tensors.
  • axis (int) – The axis along which the tensors are concatenated.
Returns:

result – The concatenated tensor.

Return type:

relay.Expr

tvm.relay.op.tensor.copy(data)

Copy a tensor.

Parameters:data (relay.Expr) – The tensor to be copied.
Returns:result – The copied result.
Return type:relay.Expr
tvm.relay.op.tensor.device_copy(data, src_dev, dst_dev)

Copy data from the source device to the destination device. This operator helps data transferring between difference contexts for heterogeneous execution.

Parameters:
  • data (tvm.relay.Expr) – The tensor to be copied.
  • src_dev (Union[TVMContext, str]) – The source device where the data is copied from.
  • dst_dev (Union[TVMContext, str]) – The destination device where the data is copied to.
Returns:

result – The copied result.

Return type:

tvm.relay.Expr

tvm.relay.op.tensor.divide(lhs, rhs)

Division with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.equal(lhs, rhs)

Broadcasted elementwise test for (lhs == rhs).

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.exp(data)

Compute elementwise exp of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.floor(data)

Compute element-wise floor of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.greater(lhs, rhs)

Broadcasted elementwise test for (lhs > rhs).

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.greater_equal(lhs, rhs)

Broadcasted elementwise test for (lhs >= rhs).

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.left_shift(lhs, rhs)

Left shift with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.less(lhs, rhs)

Broadcasted elementwise test for (lhs < rhs).

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.less_equal(lhs, rhs)

Broadcasted elementwise test for (lhs <= rhs).

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.log(data)

Compute elementwise log of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.logical_and(lhs, rhs)

logical AND with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.logical_not(data)

Compute element-wise logical not of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.logical_or(lhs, rhs)

logical OR with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.maximum(lhs, rhs)

Maximum with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.minimum(lhs, rhs)

Minimum with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.mod(lhs, rhs)

Mod with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.multiply(lhs, rhs)

Multiplication with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.negative(data)

Compute element-wise negative of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.not_equal(lhs, rhs)

Broadcasted elementwise test for (lhs != rhs).

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.ones(shape, dtype)

Fill array with ones.

Parameters:
  • shape (tuple of int) – The shape of the target.
  • dtype (data type) – The data type of the target.
Returns:

result – The resulting tensor.

Return type:

relay.Expr

tvm.relay.op.tensor.ones_like(data)

Returns an array of ones, with same type and shape as the input.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.power(lhs, rhs)

Power with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.right_shift(lhs, rhs)

Right shift with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.round(data)

Compute element-wise round of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.shape_of(data, dtype='int32')

Get shape of a tensor.

Parameters:
  • data (tvm.relay.Expr) – The input tensor.
  • dtype (str, optional) – The target data type.
Returns:

result – The shape tensor.

Return type:

tvm.relay.Expr

tvm.relay.op.tensor.sigmoid(data)

Compute elementwise sigmoid of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.sign(data)

Compute element-wise absolute of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.sqrt(data)

Compute elementwise sqrt of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.subtract(lhs, rhs)

Subtraction with numpy-style broadcasting.

Parameters:
  • lhs (relay.Expr) – The left hand side input data
  • rhs (relay.Expr) – The right hand side input data
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.tensor.tanh(data)

Compute element-wise tanh of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.trunc(data)

Compute element-wise trunc of data.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr
tvm.relay.op.tensor.zeros(shape, dtype)

Fill array with zeros.

Parameters:
  • shape (tuple of int) – The shape of the target.
  • dtype (data type) – The data type of the target.
Returns:

result – The resulting tensor.

Return type:

relay.Expr

tvm.relay.op.tensor.zeros_like(data)

Returns an array of zeros, with same type and shape as the input.

Parameters:data (relay.Expr) – The input data
Returns:result – The computed result.
Return type:relay.Expr

Transform operators.

tvm.relay.op.transform.arange(start, stop=None, step=1, dtype='float32')

Return evenly spaced values within a given interval.

Note

Similar to numpy.arange, when only one argument is given, it is used as stop instead of start while start takes default value 0.

Warning: Undefined behavior when dtype is incompatible with start/stop/step. It could lead to different results compared to numpy, MXNet, pytorch, etc.

Parameters:
  • start (tvm.Expr, optional) – Start of interval. The interval includes this value. The default start value is 0.
  • stop (tvm.Expr) – Stop of interval. The interval does not include this value.
  • step (tvm.Expr, optional) – Spacing between values. The default step size is 1.
  • dtype (str, optional) – The target data type.
Returns:

result – The resulting tensor.

Return type:

relay.Expr

Examples

relay.arange(5) = [0, 1, 2, 3, 4]
relay.arange(1, 5) = [1, 2, 3, 4]
relay.arange(1, 5, 1.5) = [1, 2.5, 4]
tvm.relay.op.transform.broadcast_to(data, shape)

Return a scalar value array with the same type, broadcast to the provided shape.

Parameters:
  • data (relay.Expr) – The input tensor.
  • shape (shape) – Provide the shape to broadcast to.
Returns:

result – The resulting tensor.

Return type:

relay.Expr

tvm.relay.op.transform.broadcast_to_like(data, broadcast_type)

Return a scalar value array with the same shape and type as the input array.

Parameters:
  • data (relay.Expr) – The input tensor.
  • broadcast_type (relay.Expr) – Provide the type to broadcast to.
Returns:

result – The resulting tensor.

Return type:

relay.Expr

tvm.relay.op.transform.cast(data, dtype)

Cast input tensor to data type.

Parameters:
  • data (relay.Expr) – The input data to the operator.
  • dtype (str) – The target data type
Returns:

result – The casted result.

Return type:

relay.Expr

tvm.relay.op.transform.collapse_sum_like(data, collapse_type)

Return a scalar value array with the same shape and type as the input array.

Parameters:
  • data (relay.Expr) – The input tensor.
  • collapse_type (relay.Expr) – Provide the type to collapse to.
Returns:

result – The resulting tensor.

Return type:

relay.Expr

tvm.relay.op.transform.expand_dims(data, axis, num_newaxis=1)

Insert num_newaxis axises at the position given by axis.

Parameters:
  • data (relay.Expr) – The input data to the operator.
  • axis (int) – The axis at which the input array is expanded. Should lie in range [-data.ndim - 1, data.ndim]. If axis < 0, it is the first axis inserted; If axis >= 0, it is the last axis inserted in Python’s negative indexing.
  • num_newaxis (int) – Number of axes to be inserted. Should be >= 0.
Returns:

result – The reshaped result.

Return type:

relay.Expr

tvm.relay.op.transform.full(fill_value, shape=(), dtype='')

Fill array with scalar value.

Parameters:
  • fill_value (relay.Expr) – The value to fill. Must be a scalar.
  • shape (tuple of int) – The shape of the target.
  • dtype (data type, optional (defaults to data type of the fill value)) – The data type of the target.
Returns:

result – The resulting tensor.

Return type:

relay.Expr

tvm.relay.op.transform.full_like(data, fill_value)

Return a scalar value array with the same shape and type as the input array.

Parameters:
  • data (relay.Expr) – The input tensor.
  • fill_value (relay.Expr) – The scalar value to fill.
Returns:

result – The resulting tensor.

Return type:

relay.Expr

tvm.relay.op.transform.layout_transform(data, src_layout, dst_layout)

Transform the layout of a tensor

Parameters:
  • data (relay.Expr) – The source tensor to be transformed
  • src_layout (str) – The source layout. (e.g NCHW)
  • dst_layout (str) – The destination layout. (e.g. NCHW16c)
Returns:

ret – The transformed tensor.

Return type:

relay.Expr

tvm.relay.op.transform.repeat(data, repeats, axis)

Repeats elements of an array. By default, repeat flattens the input array into 1-D and then repeats the elements.

repeats : int
The number of repetitions for each element.
axis: int
The axis along which to repeat values. The negative numbers are interpreted counting from the backward. By default, use the flattened input array, and return a flat output array.
Returns:ret – The computed result.
Return type:relay.Expr

Examples

x = [[1, 2], [3, 4]]
relay.repeat(x, repeats=2) = [1., 1., 2., 2., 3., 3., 4., 4.]

relay.repeat(x, repeats=2, axis=1) = [[1., 1., 2., 2.],
                                      [3., 3., 4., 4.]]
tvm.relay.op.transform.reshape(data, newshape)

Reshapes the input array.

Example:

To give user more convenience in without doing manual shape inference, some dimensions of the shape can take special values from the set {0, -1, -2, -3, -4}. The significance of each is explained below:

  • 0 copy this dimension from the input to the output shape.

Example:

- data.shape = (2,3,4), newshape = (4,0,2), result.shape = (4,3,2)
- data.shape = (2,3,4), newshape = (2,0,0), result.shape = (2,3,4)
  • -1 infers the dimension of the output shape by using the remainder of the input dimensions

keeping the size of the new array same as that of the input array. At most one dimension of shape can be -1.

Example:

- data.shape = (2,3,4), newshape = (6,1,-1), result.shape = (6,1,4)
- data.shape = (2,3,4), newshape = (3,-1,8), result.shape = (3,1,8)
- data.shape = (2,3,4), newshape = (-1,), result.shape = (24,)
  • -2 copy all/remainder of the input dimensions to the output shape.

Example:

- data.shape = (2,3,4), newshape = (-2,), result.shape = (2,3,4)
- data.shape = (2,3,4), newshape = (2,-2), result.shape = (2,3,4)
- data.shape = (2,3,4), newshape = (-2,1,1), result.shape = (2,3,4,1,1)
  • -3 use the product of two consecutive dimensions of the input shape

as the output dimension.

Example:

- data.shape = (2,3,4), newshape = (-3,4), result.shape = (6,4)
- data.shape = (2,3,4,5), newshape = (-3,-3), result.shape = (6,20)
- data.shape = (2,3,4), newshape = (0,-3), result.shape = (2,12)
- data.shape = (2,3,4), newshape = (-3,-2), result.shape = (6,4)
  • -4 split one dimension of the input into two dimensions passed subsequent

to -4 in shape (can contain -1).

Example:

- data.shape = (2,3,4), newshape = (-4,1,2,-2), result.shape = (1,2,3,4)
- data.shape = (2,3,4), newshape = (2,-4,-1,3,-2), result.shape = (2,1,3,4)
Parameters:
  • data (relay.Expr) – The input data to the operator.
  • newshape (Union[int, Tuple[int], List[int]]) – The new shape. Should be compatible with the original shape.
Returns:

result – The reshaped result.

Return type:

relay.Expr

tvm.relay.op.transform.reshape_like(data, shape_like)

Reshapes the input array by the size of another array. For an input array with shape (d1, d2, ..., dk), reshape_like operation reshapes the input array into an output array with the same shape as the second input array.

Note

Sizes for both array should be compatible.

Parameters:
  • data (relay.Expr) – The input data to the operator.
  • shape_like (tuple of int) – The new shape. Should be compatible with the original shape.
Returns:

ret – The computed result.

Return type:

relay.Expr

tvm.relay.op.transform.reverse(data, axis)

Reverses the order of elements along given axis while preserving array shape. By default, repeat flattens the input array into 1-D and then repeats the elements.

Parameters:
  • data (relay.Expr) – The input data to the operator.
  • axis (int) – The axis along which to reverse elements.
Returns:

ret – The computed result.

Return type:

relay.Expr

Examples

x = [[1., 2.], [3., 4.]]
relay.reverse(x, axis=0) = [[3., 4.], [1., 2.]]

relay.reverse(x, axis=1) = [[2., 1.], [4., 3.]]
tvm.relay.op.transform.reverse_reshape(data, newshape)

Reshapes the input array where the special values are inferred from right to left.

Example:

The special values have the same semantics as tvm.relay.reshape. The difference is that special values are inferred from right to left. It can be explained in the example below:

- data.shape = (10,5,4), newshape = (-1,0), reshape results in (40,5)
- data.shape = (10,5,4), newshape = (-1,0), reverse_reshape results in (40,5)
Parameters:
  • data (relay.Expr) – The input data to the operator.
  • newshape (Union[int, Tuple[int], List[int]]) – The new shape. Should be compatible with the original shape.
Returns:

result – The reshaped result.

Return type:

relay.Expr

tvm.relay.op.transform.slice_like(data, shape_like, axes=None)

Slice the first input with respect to the second input.

For an input array with shape (d1, d2, ..., dk), slice_like operation slices the the input array corresponding size of second array. By default will slice on all axes.

Parameters:
  • data (tvm.relay.Expr) – The source array.
  • shape_like (tvm.relay.Expr) – The new shape.
  • axes (Optional[Tuple[int]]) – List of axes on which input data will be sliced according to the corresponding size of the second input. By default will slice on all axes. Negative axes mean counting in reverse.
Returns:

result – The computed result.

Return type:

relay.Expr

tvm.relay.op.transform.split(data, indices_or_sections, axis=0)

Split input tensor along axis by sections or indices.

If indices_or_sections is an integer, the input will be divided equally along given axis. If such a split is not possible, an error is raised.

If indices_or_sections is a tuple of sorted integers, the entries indicate where along axis the array is split.

Parameters:
  • data (relay.Expr) – The source array.
  • indices_or_sections (int or tuple of int) – Indices or sections to split into. Accepts an int or a tuple
  • axis (int, optional) – The axis over which to split.
Returns:

ret – The computed result.

Return type:

relay.Tuple([relay.Expr, relay.Expr])

tvm.relay.op.transform.squeeze(data, axis=None)

Squeeze axes in the array.

Parameters:
  • data (tvm.relay.Expr) – The input data to the operator.
  • axis (None or List[int]) – The set of axes to remove. If axis = None, remove all axis of dimensions 1. If any specified axis has dimension that does not equal 1, it is an error.
Returns:

result – The squeezed result.

Return type:

tvm.relay.Expr

tvm.relay.op.transform.stack(data, axis)

Join a sequence of arrays along a new axis.

Parameters:
  • data (relay.Expr) – The input data to the operator.
  • axis (int) – The axis in the result array along which the input arrays are stacked.

:param .. note::: Each array in the input array sequence must have the same shape.

Returns:ret – The computed result.
Return type:relay.Expr
tvm.relay.op.transform.strided_slice(data, begin, end, strides=None)

Strided slice of an array.

Parameters:
  • data (relay.Expr) – The source array to be sliced.
  • begin (list of int) – The indices to begin with in the slicing.
  • end (list of int) – Indices indicating end of the slice.
  • strides (list of int, optional) – Specifies the stride values, it can be negative in that case, the input tensor will be reversed in that particular axis.
Returns:

ret – The computed result.

Return type:

relay.Expr

tvm.relay.op.transform.take(data, indices, axis=None)

Take elements from an array along an axis.

Parameters:
  • data (relay.Expr) – The source array.
  • indices (rely.Expr) – The indices of the values to extract.
  • axis (int, optional) – The axis over which to select values. By default, the flattened input array is used.
Returns:

ret – The computed result.

Return type:

relay.Expr

tvm.relay.op.transform.tile(data, reps)

Repeats the whole array multiple times.

Parameters:
  • data (relay.Expr) – The input data to the operator.
  • reps (tuple of int) – The number of times repeating the tensor data.
:param .. note::: Each dim size of reps must be a positive integer. If reps has length d,
the result will have dimension of max(d, data.ndim); If data.ndim < d, data is promoted to be d-dimensional by prepending new axes. If data.ndim >= d, reps is promoted to a.ndim by pre-pending 1’s to it.
Returns:ret – The computed result.
Return type:relay.Expr

Examples

x = [[1, 2], [3, 4]]
relay.tile(x, reps=(2,3)) = [[1., 2., 1., 2., 1., 2.],
                             [3., 4., 3., 4., 3., 4.],
                             [1., 2., 1., 2., 1., 2.],
                             [3., 4., 3., 4., 3., 4.]]

relay.tile(x, reps=(2,)) = [[1., 2., 1., 2.],
                            [3., 4., 3., 4.]]
tvm.relay.op.transform.transpose(data, axes=None)

Permutes the dimensions of an array.

Parameters:
  • data (relay.Expr) – The input data to the operator.
  • axes (None or List[int]) – The target axes order, reverse order if not specified.
Returns:

result – The transposed result.

Return type:

relay.Expr

tvm.relay.op.transform.where(condition, x, y)

Selecting elements from either x or y depending on the value of the condition.

Note

The shape of condition, x, and y needs to be the same.

Parameters:
  • condition (relay.Expr) – The condition array. The n-th element in y is selected when the n-th value in the condition array is zero. Otherwise, the corresponding element from x will be picked.
  • x (relay.Expr) – The first array to be selected.
  • y (relay.Expr) – The second array to be selected.
Returns:

result – The selected array.

Return type:

relay.Expr

Examples

x = [[1, 2], [3, 4]]
y = [[5, 6], [7, 8]]
condition = [[0, 1], [-1, 0]]
relay.where(conditon, x, y) = [[5, 2], [3, 8]]

condition = [1, 0]
relay.where(conditon, x, y) = [[1, 2], [7, 8]]

Neural network related operators.

Multibox operations.

tvm.relay.op.vision.multibox.multibox_prior(data, sizes=(1.0, ), ratios=(1.0, ), steps=(-1.0, -1.0), offsets=(0.5, 0.5), clip=False)

Generate prior(anchor) boxes from data, sizes and ratios.

Parameters:
  • data (relay.Expr) – The input data tensor.
  • sizes (tuple of float, optional) – Tuple of sizes for anchor boxes.
  • ratios (tuple of float, optional) – Tuple of ratios for anchor boxes.
  • steps (Tuple of float, optional) – Priorbox step across y and x, -1 for auto calculation.
  • offsets (tuple of int, optional) – Priorbox center offsets, y and x respectively.
  • clip (boolean, optional) – Whether to clip out-of-boundary boxes.
Returns:

out – 3-D tensor with shape [1, h_in * w_in * (num_sizes + num_ratios - 1), 4]

Return type:

relay.Expr

tvm.relay.op.vision.multibox.multibox_transform_loc(cls_prob, loc_pred, anchor, clip=True, threshold=0.01, variances=(0.1, 0.1, 0.2, 0.2))

Location transformation for multibox detection

Parameters:
  • cls_prob (tvm.relay.Expr) – Class probabilities.
  • loc_pred (tvm.relay.Expr) – Location regression predictions.
  • anchor (tvm.relay.Expr) – Prior anchor boxes.
  • clip (boolean, optional) – Whether to clip out-of-boundary boxes.
  • threshold (double, optional) – Threshold to be a positive prediction.
  • variances (Tuple of float, optional) – variances to be decoded from box regression output.
Returns:

ret

Return type:

tuple of tvm.relay.Expr

tvm.relay.vision.nms()

Non-maximum suppression operations.