Adding an Operator to Relay

In order to use TVM operators from within the Relay IR, the operators need to be registered in Relay in order to ensure that they will be integrated into Relay’s type system.

Registering an operator requires three steps:

  • Using the RELAY_REGISTER_OP macro in C++ to register the operator’s arity and type information
  • Defining a C++ function to produce a call node for the operator and registering a Python API hook for the function
  • Wrapping the above Python API hook in a neater interface

The file src/relay/op/tensor/ provides examples of the first two steps, while python/tvm/relay/op/ gives examples of the last.

Registering an Operator

TVM already has an operator registry, but Relay cannot properly incorporate TVM operators without additional type information.

To allow for flexibility in registering operators and greater expressivity and granularity in expressing types in Relay, operators are typed using relations between input and output types. These relations are represented as functions that take in a list of input types and output types (any of these types may be incomplete) and return a list of input and output types that satisfies the relation. Essentially, a relation for an operator can enforce all the necessary typing rules (namely by inspecting the input types) in addition to computing the output type.

For example, see src/relay/op/type_relations.h and their implementations. E.g., BroadcastRel takes two input types and an output type, checks that they are all tensor types with the same underlying data type, and finally ensures that the shape of the output type is the broadcast of the input types’ shapes.

It may be necessary to add another type relation to type_relations.h if the existing ones do not capture the behavior of the desired operator.

The RELAY_REGISTER_OP macro in C++ allows a developer to specify the following information about an operator in Relay:

  • Arity (number of arguments)
  • Names and descriptions for positional arguments
  • Support level (1 indicates an internal intrinsic; higher numbers indicate less integral or externally supported operators)
  • A type relation for the operator

The below example is from and uses a broadcasting add for tensors:

    .add_argument("lhs", "Tensor", "The left hand side tensor.")
    .add_argument("rhs", "Tensor", "The right hand side tensor.")
    .add_type_rel("Broadcast", BroadcastRel);

Creating a Call Node

This step requires simply writing a function that takes the arguments to the operator (as Relay expressions) and returning a call node to the operator (i.e., the node that should be placed into the Relay AST where the call to the operator is intended).

At present call attributes and type arguments (the last two fields) are not supported, so it suffices to use Op::Get to fetch the operator’s information from the operator registry and pass in the arguments to the call node, as below.

    .set_body_typed<Expr(Expr, Expr)>([](Expr lhs, Expr rhs) {
        static const Op& op = Op::Get("add");
      return CallNode::make(op, {lhs, rhs}, Attrs(), {});

Including a Python API Hook

It is generally the convention in Relay, that functions exported through TVM_REGISTER_API should be wrapped in a separate Python function rather than called directly in Python. In the case of the functions that produce calls to operators, it may be convenient to bundle them, as in python/tvm/relay/op/, where elementwise operators on tensors are all provided. For example, the following is how the add function from the previous section is exposed in Python:

def add(lhs, rhs):
    """Elementwise addition.

    lhs : relay.Expr
        The left hand side input data
    rhs : relay.Expr
        The right hand side input data

    result : relay.Expr
        The computed result.
    return _make.add(lhs, rhs)

Note that these Python wrappers might also be good opportunities to provide an easier interface to the operator. For example, the concat operator is registered as taking only one operator, namely a tuple with the tensors to be concatenated, but the Python wrapper takes the tensors as arguments and combines them into a tuple before producing the call node:

def concat(*args):
    """Concatenate the input tensors along the zero axis.

    args: list of Tensor

    tensor: The concatenated tensor.
    tup = Tuple(list(args))
    return _make.concat(tup)


  • A TVM operator can be registered in Relay using a relation to express the appropriate type information.
  • Using an operator in Relay requires a function to produce a call node for the operator.
  • It is best to have a simple Python wrapper for producing the call node.